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It has been proposed that some posets of quantum logic could be embedded 
into lattices in order to recover the lattice structure avoiding the introduction of 
"ad hoc" axioms. We consider here the embedding q~s of any poset S into the 
complete lattice ~s of its closed ideals ("normal" embedding of S) and show 
that 4~s can be characterized (up to a lattice isomorphism) either by means of 
a "density" property or by means of a "minimality" property. Both of these 
suggest that the normal embedding satisfies some intuitive conditions which 
make it preferable with respect to other possible embeddings of S. We consider 
the poset ~ of all the "effects" associated to yes-no experiments and briefly 
comment on the application of the normal embedding in this case. The possibility 
of giving a physical interpretation to the elements of ~ is also discussed. 

1. I N T R O D U C T I O N  

It has been  suggested by some authors that the methods for embedd ing  
posets into lattices can find some use in q u a n t u m  logic (Q.L.) as a way of 

bypass ing  a c o m m o n  difficulty of many  axiomat ic  approaches,  and  precisely 
that  of  f inding physical  a rguments  which can suppor t  the assumpt ion  that 

the basic poset,  which can be different in the various approaches,  is a lattice 
(e.g., Beltrametti  and  Cassinell i ,  1976; Jauch,  1968; Mackey,  1963; and  
Piton,  1976). In  part icular ,  the wel l -known " n o r m a l "  embedd ing  ~bs of a 
poser S into the complete  lattice ~ s  of all its closed ideals (sometimes 
referred to in the l i terature as the "comple t ion  by cuts" of S) that  makes 
every a c S cor respond to the pr incipal  ideal  generated by a itself has been  
explicitly p roposed  by K. Bugaiska and  S. Bugaiski (1973) as the "na tu ra l "  
one for the "p ropos i t iona l "  logic of any physical  system; the same authors  
have proved that this embedd ing  preserves some structure propert ies of S 
that are impor tan t  in Q.L. Similarly, W. Guz  has proposed to embed sui tably 
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any logic into its "phase geometry" and has shown that this embedding 
coincides (up to a lattice isomorphism) with the normal embedding 
whenever some reasonable assumptions are introduced on the set of  the 
pure states of the physical system. 

However, there are infinitely many ways of  embedding a poset into a 
lattice, so that the choice of a particular embedding as physically meaningful 
ought to rest, in our opinion, upon deeper arguments; in addition we think 
it desirable that these arguments do not depend upon properties that hold 
only in the framework of some particular approaches to quantum theory. 

In the present work we consider any embedding ~b of a poset S into 
a complete lattice ~. Our first result (see Section 2, Proposition 1) shows 
that the following conditions are equivalent. 

(i) ~b coincides, up to a lattice isomorphism, with the normal embed- 
ding ~bs of S. 

(ii) Density property: Every element of ~ is the lower upper bound 
(1.u.b.) of  some subset of ~b(S) and the greatest lower bound (g.l.b.) of 
some other subset of ~b(S). 

(iii) Minimality property: Any embedding ~ of S into a complete 
lattice d / i s  such that ~ = h o ~b, with h: ~ ~ J /  an order isomorphism of  ~g 
onto h (~ ) .  

These equivalent properties have an important intuitive interpretation 
whenever S is the logic of some physical system. Indeed the equivalence 
between (i) and (ii) shows that ~ s  is the unique (up to a lattice isomorphism) 
complete lattice extension of S which guarantees that for any object A 
~ s \ S  two classes of elements of S (i.e., of  "physical objects") exist such 
that A is the unique element of ~?s which separates them. The equivalence 
between (i) and (iii) guarantees that ~s  is obtained from S by adjunction 
of  the "minimum possible number" of elements. 

The above interpretations are arguments in favor of the normal embed- 
ding which do not depend, as desired, upon the further assumptions on the 
basic poset S that are introduced in the various axiomatic approaches to Q.L. 

In addition, we remark that the usual requirement in Q.L. that the 
lattice be complete is a mathematical requisite without direct physical 
justification and is imposed in order to obtain more manageable structures; 
thus one can believe that an approach is more realistic which avoids 
introducing it. At the end of Section 2 we show that every embedding of  S 
into a lattice ~ (not necessarily complete) coincides, up to a lattice 
isomorphism, with the embedding of S in some suitable sublattice of ~s iff 
S is dense in ~. This seems again an argument in favor of the normal 
embedding. 

In Section 3 we remark that the above results suggest, in particular, 
how to recover an intuitively legitimated complete lattice structure starting 
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from the poset ~ of the "effects" (these are equivalence classes of the yes-no 
experiments that can be performed on a given physical system) or from any 
subset of ~ which may be important in Q.L,  and briefly sketch the lines 
that can be followed in this case. We close our work with some comments 
about the physical interpretation of the elements of the lattice 5g~ of the 
closed ideals of ~; in particular, we show that those elements which do 
not correspond to effects could perhaps be interpreted as equivalence classes 
of yes-no devices for which a probability of the yes outcome can be defined 
only if it is 0 or 1. 

2. NORMAL EMBEDDING OF POSETS INTO LATTICES 

As we have anticipated in the Introduction, we will firstly deal in this 
section with the problem of characterizing the embedding of every poset 
into the complete lattice of  its closed ideals by means of equivalent condi- 
tions. The equivalence between (i) and (ii) essentially rephrases Theorem 
9 in Chap. 3 of Skorniakov's book (Skorniakov, 1977). In the present work 
an alternative proof  follows immediately from some preliminary Iemmas 
and from our proof  of the equivalence between (i) and (iii). This last 
equivalence, in turn, could be deduced by Skorniakov's Theorem 8 
(Skorniakov, 1977) ; we give here a direct proof  of it. 

Definition I. Let ~ be any lattice, S any subposet of ~. Then, we say 
that S is a dense subposet of ~ whenever any a ~ ~ is the greatest lower 
bound (briefly, g.l.b.) of some subset of S and the lower upper bound 
(briefly, 1.u.b.) of some other subset of S. 

Definition 2. Let S be any poset. For any A c S we put 

A ~ ={a  c S[a < - b Vb~  A} 

A V={a  c S]b <- a V b c  A} 

We recall now some definitions and results which are standard in poset 
and lattice theory (e.g., Birkhoff, 1967). 

Let S be a poset, A c S. Then, A is usually said to be a closed ideal 
of S if (AV) A = A, a closed filter if (AZ~) v = A. Let 37s and ~s  be, respectively, 
the sets of all the closed ideals and of all the closed filters of S, partially 
ordered by set theoretical inclusion. Then, 37s and ~s  are complete lattices, 
and the mapping 

~:A~ ~s--> AV ~ ~s  

is a dual isomorphism. 
Furthermore, the injective mapping 

Cs: a ~ S--> {a} A c ~ s  
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is an order isomorphism of S onto Cs(S), preserves 1.u.b. and g.l.b, existing 
in S and will be called the "normal"  embedding of S; it is apparent  that 
(as(S) coincides with the poset of  all the principal ideals of  S. 

Then, we can state the following lemmas: 

Lemma I. Let S be any poset, let ~bs be the normal embedding of S 
and let us make reference to Definition 1. Then, r  is dense in the lattice 
5r of  the closed ideals of  S. 

Proof Let A be a closed ideal of S and let w and n ,  respectively, 
denote set-union and set-intersection. Then, by making reference to Defini- 
tion 2, we easily get A = N a s a  {a} zx = ( - ~ a  ~ {a} A, sO that A is 1.u.b. in ~ s  
of  the set {{a}ZXla c A} and g.l.b, of  the set {{a}ZXla c AV}, both consisting 
of  principal ideals of  S. Since Cs(S) coincides with the poset of  all the 
principal ideals of  S, our statement is proved. �9 

Lemma 2. Let 37 be a (nonnecessarily complete) lattice, let us denote 
by v and ^ ,  respectively, join and meet in LP and let us make reference 
to Definition 1. Let S be a dense subposet of  ~f. Then, for every y ~ ~7 

y = A x = V x  
x~S x~S 
x>--y x~y 

Moreover, the set Ay = {x ~ Six <_ y} c S is a closed ideal of  S and the set 
{x ~ Six ~ y} c S coincides with the closed filter Ay v of S. 

Proof The first statement of the lemma directly follows from the 
definition of  density. 

The second statement follows from the first statement and from the 
implications 

x c  AVy CC, x ~  S and x>-z VzcAycc ,  x c  S and x>- y 

x c ( AVy )~C~x~S  and x < - z V z e  v A y  lr~ x E Ay  �9 

Lemma 3. Let S be any poset, qs any embedding of S into a complete 
lattice ~/, ~ s  the complete lattice of the closed ideals of  S, Cs the normal 
embedding of  S. Let us denote by v the join in J//, and let us make reference 
to Definitions 1 and 2. Then, the mapping 

f : A e . ~ s ~ f ( A ) =  V x e ~ l  
xeO(A) 

is an order isomorphism of Afs onto f ( ~ s )  c_ ~ such that 

=f~  Cs 
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Moreover,  f reduces to a lattice isomorphism of ~ s  onto Jg whenever to(S) 
is dense in ~t. 

Proof The mapping f is trivially monotonic.  Let us prove first that it 
is an order isomorphism of 5fs onto f (~s) .  

Let A c S be a closed ideal of S. Since the mapping to is an embedding 
of S into ~t, we get 

to(A v) = {y c to(S)ly - - f ( a ) }  

hence, recalling the definition o f f ( A ) ,  

to(a)  = to((aV) zx) = {x e to(S)[x _< y for any y e to(AV)} 

-= {x  c to( S ) l x  ---f(A)} 

Thus, for every A, B e 5fs, 

f ( a )  = f ( B ) ~ t o ( a )  = to(B)~  A = B 

hence f is injective. Furthermore, let x, y e f ( ~ s )  so that x = f ( A )  and 
y = f ( B )  for some A, B e 5fs, and let x-< y. Then, we get 

x <- y=),f(a) <-f(B)::=> to(A) c_ tO(B)~a  c_ B=:~f-l(x) <f - l (y )  

Therefore, our first statement is proved. 
Let us show now that to = f o  6s. To this end, let us consider any a e S. 

Then, we have 

f(r = V x =  V x = t o ( a )  
x~q,({a} ~) xEO(S) 

x<-O(a) 

Finally, let us show that f is a lattice isomorphism of ~ s  onto ~ whenever 
to(S) is dense in ~ .  Indeed, in this case, for every y ~ d/ the set Ay = 
{x~ to(S)lx<-y} is a closed ideal of  to(S) because of Lemma 2, hence 
to-l(Ay) is a closed ideal of  S. Then, f (2es)=~.  Thus, f is an order 
isomorphism of  ~ s  onto ~ ,  and our statement is proved. �9 

Remark. In the statement of  Lemma 3 the mapping f could just as 
well be substituted everywhere by the mapping 

f ' : A e ~ s ~ f ' ( A ) =  A x~d/l 
xeO(a) 

as can easily be seen by considering the dual lattice ~ s  of  Lgs. 
By comparing the definitions of f and f '  we obtain at once 

f ( a )  <_if(a) VA c 5gs 

Of course, f = f '  whenever th(S) is dense in ~t. 
We can now state the following Proposition. 
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Proposition I. Let S be any poset, ~b any embedding of S into a complete 
lattice ~f, 4~s the normal embedding of $. Let us make reference to Definitions 
1 and 2. Then, the following conditions are'equivalent:  

(i) ~b = g o ~bs with g a lattice isomorphism. 
(ii) ~b(S) is dense in ~.  
(iii) For any embedding ff of S into a complete lattice ~ ,  an order 

isomorphism h: Ze_~ h ( ~ )  ~ d/ exists such that tp = h o 4~. 

Proof Condition (i) implies condition (iii) because of the first statement 
in Lemma 3. 

Condition (ii) implies condition (i) because of the second statement 
in Lemma 3. 

It remains to show that condition (iii) implies condition (ii). To this 
end, let us assume that (iii) holds and let us put q~ = ths. Then, h ( ~ )  is a 
subposet of  37s, hence h(cb(S)) = (as(S) is dense in h(37) because of Lemma 
1, so that 4~(S) = h-l(Chs(S)) must be dense in ~.  �9 

As we have anticipated in the Introduction, our next statement connects 
the normal embedding of any poset S with any dense embedding of  S into 
a (nonnecessarily complete) lattice. 

Proposition 2. Let S be any poset, th any embedding of S into a lattice 
~,  37s the complete lattice of  the closed ideals of  S, ~bs the normal embedding 
of S, and let us make reference to Definition 1. Then, the following statements 
are equivalent: 

(i) a sublattice ~1 of ~ s  exists such that ch=gochs, with g a lattice 
isomorphism of ~1 onto LP. 

(ii) 4~(S) is dense in LP. 

Proof. The implication ( i ) ~ ( i i )  is an immediate consequence of 
Lemma 1. Therefore, we will limit ourselves to prove the implication 
( i i )~ ( i ) .  

Let us denote join and meet, both in ~ and in ~s,  with v and ^ ,  
respectively (we recall that u means set union in this paper) ; furthermore, 
for any y e ~ ,  we put Ay = {X E ~(S)]x ~ y}. Let ~b (S) be dense in ~.  Then, 
we obtain from Lemma 2 that Ay is a closed ideal of  ~b(S) and that 
y=V~A,X;  hence, it follows at once that r and that the 
mapping 

l:ye ~ t ~ - l ( A y )  c ~ s  

is a poset isomorphism of ~ onto ~ = I(SC) _ ~s.  Let us show that S~l is 
a sublattice of  ~s. 

Let Y, Z e ~ ;  then, two elements y, z ~ ~ exist such that Y = (a-~(Ay), 
Z = ~b- l (Az) .  By making use of  the first statement of  Lemma 2, we get 
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w = y v z = Vx~Ayt.,Az X. Let us consider the closed ideal W = q~-l(Aw) c I(Lr 
We have trivially W _  Y, W D Z, hence W_D y v Z. Furthermore, for every 
a ~ S ,  

a c W ~ a < - b  V b ~ (  Y u  Z )  v 

~ a ~ b  V b c ( Y v  Z ) V ~ a c ( ( Y v  Z ) V ) r ' = X  v Z 

hence W c _ Y v Z .  Thus, Y v Z = W ,  i.e., the join Y v Z  belongs to ~ .  
Similarly, we can prove that Y ^ Z ~ 371. Then, 37~ is a sublattice of  5fs, as 
state& 

By setting g - -  l -~, our statement (i) follows at once �9 

We would like to close this section recalling the following results 
obtained by Bugaiska and Bugaiski (1973). 

First, whenever S is an orthoposet,  the orthocomplementat ion can be 
extended to the complete lattice ~Lt' s of its closed ideals. Second, whenever 
S is an atomic poset, then also 37s is atomic. Finally, whenever S is an 
or thomodular  poset which satisfies some further axioms (like the "projection 
postulate") which derive from a physical interpretation of S, then 37s also 
is orthomodular.  

3. N O R M A L  E M B E D D I N G  IN QUANTUM L O G I C  

We will firstly comment  in this section on the application of the normal 
embedding in Q.L. whenever the poset of  the effects is considered. 

To this end we recall some preliminary definitions [for further details, 
see Garola  (1980) and Garola  and Solombrino (1983)]. 

We consider the concepts of  physical system, device with dichotomic 
outcome, state of  the system, and probability as primitive. 

We call "yes -no  experiment"  any device e with dichotomic outcome 
such that a probabili ty a (e) can be attributed to the yes outcome whenever 
e is performed on the system in the state a, and denote by e' the experiment 
obtained from e by reversing the roles of  the yes and no outcomes, by E 
the set of  all the yes-no experiments, by ~ the set of  all the states for a 
given system. 

We introduce in E a preorder relation<-, by setting 

for any e, f ~  E, e -< f<=> ~ (e) -< a ( f )  for every a c 

and the equivalence relation - induced by <-. Furthermore, we assume that 
a "certainly true" experiment ez and a "certainly false" experiment eo exist 
in/3, respectively, characterized by a (e l )  = 1 and a(eo) = 0 for every a ~ ~. 

We call "set of  the effects" the set ~ = E / - ,  denote again by -< the 
order in ~ induced by the preorder in E, and for every e ~ E, a :- [e]_ ~ 
we put a ( a ) =  a ( e ) .  
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Let us consider now ~ with the order <-. In this poset, g.l.b, and l.u.b. 
do not necessarily exist for every pair of elements. We can introduce the 
normal embedding ~b~ of  ~ into the lattice ~ in order to recover a complete 
lattice structure; then, our arguments in the Introduction assure that this 
embedding satisfies some simple intuitive conditions. 

Nevertheless, the lattice ~ need not be the most suitable structure for 
the foundations of Q.L.; indeed, there are properties of the "logic" of a 
physical system which are impor tant  in most axiomatic approaches and 
that are neither shared by ~ nor by ~ .  Since every property II in the power 
set ~ ( ~ )  of  ~ characterizes a class of subsets of g, we could restrict ourselves 
to one, say, ~3, of these subsets (if not trivial) in order to obtain a richer 
structure. However, qg, like ~, need not be a lattice; thus, in order to avoid 
the introduction of assumptions that could be hard to justify from a physical 
point of view, we can again recover a lattice structure by making use of the 
normal embedding of ~g in Lr Of course, an additional requirement must 
be introduced now, i.e., that the property 17 extends to ~. 

As a first example, let us consider the property of being orthocomple- 
mented by the involutory antiautomorphism ~: [e]_ ~ [e']_ of ~ (we recall 
that in any logic the existence of an orthocomplementation is fundamental 
because it is usually interpreted as the "negation" in that logic). We have 
proved (Garola, 1980) that the class of the subposets of ~ which share this 
property, ordered by set theoretical inclusion, has a maximum, say, go (we 
recall that ~'o is the quotient set Eo/~, with Eo the subset of E whose 
elements are eo, el and every yes-no experiment e ~ E satisfying the condi- 
tion "a pair (a, /3) of states exist such that a(e) < 1/2 and/3(e)  > 1/2") but 
for nonclassical system one cannot generally assume that go is a lattice. 
Nevertheless, one can obtain a complete lattice by introducing the normal 
embedding ~b~ 0 of go into the lattice ~%. Then, the orthocomplementation 
can be extended to ~% because of the results reported at the end of Section 
2, the orthocomplementation in ~% being such that its restriction to ~b~o(gO) 
coincides with ~b% o r/o ~b~. 

As a further trivial example, we quote the poset ~ =  F / -  c_ g0, with 
F the set of  all the ideal, first-kind measurements (e.g., Jauch, 1968). This 
set is commonly accepted to be a complete, orthomodular,  atomic lattice 
satisfying the covering law. Then, the normal embedding of f f  obviously 
coincides with f f  itself and preserves all its properties. 

We observe that the posets considered in this section can be arranged 
so as to obtain the descending chain 

~-~ g0---"" ._D~ 

Here, the empty spaces indicate the possibility of inserting in the chain 
further subposets of ~ which share only some of the properties of ft. Then, 
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the lattices of  the closed ideals of  these posets form the descending chain 

(we notice that the above inclusions between lattices do not necessarily 
preserve 1.u.b. and g.l.b., i.e., join and meet). Should an orthoposet ~ be 
inserted between ~o and ~ in the first chain above, endowed with such 
properties like atomicity, or orthomodularity,  or both, then the lattice ~ 
would take the corresponding place in the second chain and preserve, 
because of  the results and under the assumptions reported in Section 2, the 
properties of  q3. 

We would like to close our paper  with some remarks about the physical 
interpretation of the elements of  5f~. It will be useful to inquire first into 
the possibility of attributing a physically motivated probability to every 
A �9 ~ for every state of  the system. 

For every a �9 5e, a �9 ~, A = r  �9 ~b~(~) c_ ~ ,  the probability a ( A )  
of A is naturally defined by the equation 

a ( A )  = a(a)  

Let us consider any A �9 Ze~. We recall from Lemma 1 of Section 2 that 

a = 1.u.b. {B �9 r  -< A} = g.l.b. {B ~ r  B} 

Then, for every a �9 5e, we put 

a ~ ( a )  = 1.u.b. {a (B)IB �9 4~($ ) ,  B-< A} 

a^ (A) = g.l.b. {a (S)] S �9 0~($ ) ,  A-< B} 

Of course, whenever A �9 r  av(A)  = a^ (A)  = a(A) .  More generally, 
for any A �9 ~ it is a~(A) <_ a^(A) ,  but we cannot say that av(A)  = a^ (A)  
for every a �9 5 e. 

Thus, we see that we have in the general case no mathematical support  
for attributing a uniquely defined "probabil i ty" a ( A )  to A for every state 
a. Yet, this does not prohibit  that for any A some subclass 5e a _c b o of  states 
exists such that a ( A )  can be defined for every a ~ OWA. Indeed, for every 
A �9 ~ let us consider the "certainly yes" domain 5el(A) and the "certainly 
not" domain 0~ respectively, defined by the equations 

5f~(A) = (a  c 9~ -- 1} 

,9~ = {a �9 5e{a^(A) = 0} 

Then, for every a �9 5el(A), av(A)  = a^ (A)  = 1, so that we can attribute to 
A the probabili ty a ( A ) =  I. Analogously, for every a cSe0(A), we can 
attribute to A the probability a ( A ) =  O. 
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Let us come now to the physical interpretation of the elements of  5g~. 
Trivially, any A ~ ~b~(~) can be interpreted as an effect, i.e., an equivalence 
class of elements of  ~. Of  course, this is no more possible for an element 
A c ~ \ ~ b ~ ( ~ ) .  Yet, our arguments above about probability show that every 
such A could perhaps be associated to some physical dichotomic device 
q ~ E which attribute a probability a (q)  to the yes outcome only if the state 
a either belongs to the "certainly yes" domain bo~(A) [then, a ( q )  = 1] or 
to the "certainly not" domain bo0(A) [then, a ( q ) = 0 ] ,  but no probabili ty 
whenever a does not belong to bol(A) or to bo0(A). This interpretation of 
the elements of  5f~\~b~(~) seems, at first glance, rather odd. However, we 
observe that devices with the property considered above are actually intro- 
duced in some approach to quantum theory (Piron, 1976; Aerts, 1980-81). 

In fact, in Piron's treatment no reference is made to the concept of  
probability when introducing the fundamental  concept of  question 
(dichotomic device) ; rather, any question characterizes a set of  states, say, 
bol(q), such that q is "certainly true" whenever the system is in a state 
a ~ bo~(q), and a set of  states, say b~ such that q is "certainly false" 
whenever the system is in a state a ~ boo(q). Then, physical devices such 
that a probabili ty is defined only if it is 0 or 1 may be considered questions 
[although, by assuming some further postulates, a probability can be 
attributed to every "proposi t ion"  in every state of the system (Piron, 1976)]. 
An example of  such a device is the question q -- II~qi introduced in Piron's 
book (with {qi} a family of  questions), because of the prescription of  testing 
an "arbitrary one"  of  the qi in order to test q (we recall that this question 
plays an important  role in Piron's approach,  since it is used by the author 
in order to construct the meet of any family of  propositions, so as to prove 
that the poset of  the propositions is a complete lattice). 
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